
Index - msaUtils - Documentation - (c) 2022 u2d.ai

Page: 1 of 3

Index

msaUtils - General utils for Microservices based on FastAPI like Pro�ler, Scheduler, Sysinfo, Healtcheck,
Error Handling etc.

pypi packagepypi package v0.0.1v0.0.1 pythonpython 3.7 | 3.8 | 3.9 | 3.103.7 | 3.8 | 3.9 | 3.10

MSASendEmail: Helper class to send email via smtp server.

MSABaseExceptionHandler: Central exception handler which sends formatted exception to logger

Filehandler utilities: Classes for FileDelete, FileUpload async with chunking, Archive pack/unpack
formats, helper functions

Find system fonts: Find available system installed fonts or search in speci�c directory

mkdocs code reference helper: Create virtual mkdocs navs for code reference and used libraries
from requirements.txt

MSAHealthCheck: Healthcheck class with internal own thread, which checks url for health

HTML Sanitizer: Helper function to sanitize 'dirty html' for text processing

logger intercept handler: allows to change handler from all logger and de�ne speci�c output format
with loguru

Models for �les and health classes: reusable pydantic models for �le handling and dealing with
healthcheck status

MSAPro�lerMiddleware: PyInstrument Pro�ler as Middleware to create a html for an admin
Dashboard

https://pypi.org/project/msaUtils
https://pypi.org/project/msaUtils

Index - msaUtils - Documentation - (c) 2022 u2d.ai

Page: 2 of 3

MSAScheduler: Scheduler class to de�ne scheduled tasks in natural language time of day between
10:00 and 16:00

MSAAppSettings: API oriented settings class with environment vars and .env �le support

Service oriented System Info: Classes and functions to get pydantic model response about system
and gpu information

MSAToken: API token handler classes and functions based on oauth2, jwt etc.

Usage example

License Agreement

msaUtils Based on MIT open source and free to use, it is free for commercial use, but please
show/list the copyright information about msaUtils somewhere.

from fastapi import FastAPI

from msaUtils.profiler import MSAProfilerMiddleware
from msaUtils.scheduler import MSAScheduler
from msaUtils.sysinfo import MSASystemInfo, get_sysinfo

app = FastAPI()

...

sysinfo
sysinfo: MSASystemInfo = get_sysinfo()
return app.templates.TemplateResponse(
"monitor.html", {"request": request, "outputSystemInfo": sysinfo}
)

profiler middleware
app.add_middleware(
 MSAProfilerMiddleware
)

scheduler
async def test_timer_min():
 print("msaSDK Test Timer Async Every Minute")

def test_timer_five_sec():
 print("msaSDK Test Timer Sync 5 Second")

myScheduler = MSAScheduler()
myScheduler.task("every 1 min", func=test_timer_min)
myScheduler.task("every 5 sec", func=test_timer_five_sec)

Index - msaUtils - Documentation - (c) 2022 u2d.ai

Page: 3 of 3

How to create the documentation

We use mkdocs and mkdocsstring. The code reference and nav entry get's created virtually by the
triggered python script /docs/gen_ref_pages.py while mkdocs serve or build is executed.

Requirements Install for the PDF creation option:

PDF Export is using mainly weasyprint, if you get some errors here pls. check there documentation.
Installation is part of the msaUtils, so this should be �ne.

We can now test and view our documentation using:

Build static Site:

Build and Publish

Build:

Publish to pypi:

mkdocs serve

mkdocs build

python setup.py sdist

twine upload dist/*

